
Copyright © The Apache Software Foundation. All rights reserved.

BookKeeper Getting Started Guide

by

Table of contents

1 Programming with BookKeeper.. 2

 1.1 Instantiating BookKeeper... 2

 1.2 Creating a ledger. .. 2

 1.3 Adding entries to a ledger. .. 3

 1.4 Closing a ledger. ..4

 1.5 Opening a ledger. .. 5

 1.6 Reading from ledger ..6

 1.7 Deleting a ledger ... 6

BookKeeper Getting Started Guide

Page 2Copyright © The Apache Software Foundation. All rights reserved.

1 Programming with BookKeeper

• Instantiating BookKeeper.
• Creating a ledger.
• Adding entries to a ledger.
• Closing a ledger.
• Opening a ledger.
• Reading from ledger
• Deleting a ledger

1.1 Instantiating BookKeeper.

The first step to use BookKeeper is to instantiate a BookKeeper object:

org.apache.bookkeeper.BookKeeper

There are three BookKeeper constructors:

public BookKeeper(String servers) throws KeeperException,
IOException

where:

• servers is a comma-separated list of ZooKeeper servers.

public BookKeeper(ZooKeeper zk) throws InterruptedException,
KeeperException

where:

• zk is a ZooKeeper object. This constructor is useful when the application also using
ZooKeeper and wants to have a single instance of ZooKeeper.

public BookKeeper(ZooKeeper zk, ClientSocketChannelFactory
channelFactory) throws InterruptedException, KeeperException

where:

• zk is a ZooKeeper object. This constructor is useful when the application also using
ZooKeeper and wants to have a single instance of ZooKeeper.

• channelFactory is a netty channel object
(org.jboss.netty.channel.socket).

1.2 Creating a ledger.

Before writing entries to BookKeeper, it is necessary to create a ledger. With the current
BookKeeper API, it is possible to create a ledger both synchronously or asynchronously. The
following methods belong to org.apache.bookkeeper.client.BookKeeper.

Synchronous call:

BookKeeper Getting Started Guide

Page 3Copyright © The Apache Software Foundation. All rights reserved.

public LedgerHandle createLedger(int ensSize, int qSize,
DigestType type, byte passwd[]) throws KeeperException,
InterruptedException, IOException, BKException

where:

• ensSize is the number of bookies (ensemble size);
• qSize is the write quorum size;
• type is the type of digest used with entries: either MAC or CRC32.
• passwd is a password that authorizes the client to write to the ledger being created.

All further operations on a ledger are invoked through the LedgerHandle object returned.

As a convenience, we provide a createLedger with default parameters
(3,2,VERIFIABLE), and the only two input parameters it requires are a digest type and a
password.

Asynchronous call:

public void asyncCreateLedger(int ensSize, int qSize,
DigestType type, byte passwd[], CreateCallback cb, Object
ctx)

The parameters are the same of the synchronous version, with the
exception of cb and ctx. CreateCallback is an interface in
org.apache.bookkeeper.client.AsyncCallback, and a class implementing it
has to implement a method called createComplete that has the following signature:

void createComplete(int rc, LedgerHandle lh, Object ctx);

where:

• rc is a return code (please refer to
org.apache.bookeeper.client.BKException for a list);

• lh is a LedgerHandle object to manipulate a ledger;
• ctx is a control object for accountability purposes. It can be essentially any object the

application is happy with.

The ctx object passed as a parameter to the call to create a ledger is the one same returned
in the callback.

1.3 Adding entries to a ledger.

Once we have a ledger handle lh obtained through a call to create a ledger,
we can start writing entries. As with creating ledgers, we can write both
synchronously and asynchronously. The following methods belong to
org.apache.bookkeeper.client.LedgerHandle.

Synchronous call:

BookKeeper Getting Started Guide

Page 4Copyright © The Apache Software Foundation. All rights reserved.

public long addEntry(byte[] data) throws InterruptedException

where:

• data is a byte array;

A call to addEntry returns the status of the operation (please refer to
org.apache.bookeeper.client.BKDefs for a list);

Asynchronous call:

public void asyncAddEntry(byte[] data, AddCallback cb, Object
ctx)

It also takes a byte array as the sequence of bytes to be stored as an entry. Additionaly, it
takes a callback object cb and a control object ctx. The callback object must implement the
AddCallback interface in org.apache.bookkeeper.client.AsyncCallback,
and a class implementing it has to implement a method called addComplete that has the
following signature:

void addComplete(int rc, LedgerHandle lh, long entryId, Object
ctx);

where:

• rc is a return code (please refer to org.apache.bookeeper.client.BKDefs for
a list);

• lh is a LedgerHandle object to manipulate a ledger;
• entryId is the identifier of entry associated with this request;
• ctx is control object used for accountability purposes. It can be any object the

application is happy with.

1.4 Closing a ledger.

Once a client is done writing, it closes the ledger. The following methods belong to
org.apache.bookkeeper.client.LedgerHandle.

Synchronous close:

public void close() throws InterruptedException

It takes no input parameters.

Asynchronous close:

public void asyncClose(CloseCallback cb, Object ctx) throws
InterruptedException

It takes a callback object cb and a control object ctx. The
callback object must implement the CloseCallback interface in

BookKeeper Getting Started Guide

Page 5Copyright © The Apache Software Foundation. All rights reserved.

org.apache.bookkeeper.client.AsyncCallback, and a class implementing it
has to implement a method called closeComplete that has the following signature:

void closeComplete(int rc, LedgerHandle lh, Object ctx)

where:

• rc is a return code (please refer to org.apache.bookeeper.client.BKDefs for
a list);

• lh is a LedgerHandle object to manipulate a ledger;
• ctx is control object used for accountability purposes.

1.5 Opening a ledger.

To read from a ledger, a client must open it first. The following methods belong to
org.apache.bookkeeper.client.BookKeeper.

Synchronous open:

public LedgerHandle openLedger(long lId, DigestType type, byte
passwd[]) throws InterruptedException, BKException

• ledgerId is the ledger identifier;
• type is the type of digest used with entries: either MAC or CRC32.
• passwd is a password to access the ledger (used only in the case of VERIFIABLE

ledgers);

Asynchronous open:

public void asyncOpenLedger(long lId, DigestType type, byte
passwd[], OpenCallback cb, Object ctx)

It also takes a a ledger identifier and a password. Additionaly, it takes a callback object
cb and a control object ctx. The callback object must implement the OpenCallback
interface in org.apache.bookkeeper.client.AsyncCallback, and a class
implementing it has to implement a method called openComplete that has the following
signature:

public void openComplete(int rc, LedgerHandle lh, Object ctx)

where:

• rc is a return code (please refer to org.apache.bookeeper.client.BKDefs for
a list);

• lh is a LedgerHandle object to manipulate a ledger;
• ctx is control object used for accountability purposes.

BookKeeper Getting Started Guide

Page 6Copyright © The Apache Software Foundation. All rights reserved.

1.6 Reading from ledger

Read calls may request one or more consecutive entries. The following methods belong to
org.apache.bookkeeper.client.LedgerHandle.

Synchronous read:

public Enumeration<LedgerEntry> readEntries(long firstEntry,
long lastEntry) throws InterruptedException, BKException

• firstEntry is the identifier of the first entry in the sequence of entries to read;
• lastEntry is the identifier of the last entry in the sequence of entries to read.

Asynchronous read:

public void asyncReadEntries(long firstEntry, long
lastEntry, ReadCallback cb, Object ctx) throws BKException,
InterruptedException

It also takes a first and a last entry identifiers. Additionaly, it takes a callback object cb and
a control object ctx. The callback object must implement the ReadCallback interface in
org.apache.bookkeeper.client.AsyncCallback, and a class implementing it
has to implement a method called readComplete that has the following signature:

void readComplete(int rc, LedgerHandle lh,
Enumeration<LedgerEntry> seq, Object ctx)

where:

• rc is a return code (please refer to org.apache.bookeeper.client.BKDefs for
a list);

• lh is a LedgerHandle object to manipulate a ledger;
• seq is a Enumeration<LedgerEntry> object to containing the list of entries

requested;
• ctx is control object used for accountability purposes.

1.7 Deleting a ledger

Once a client is done with a ledger and is sure that nobody will ever need to
read from it again, they can delete the ledger. The following methods belong to
org.apache.bookkeeper.client.BookKeeper.

Synchronous delete:

public void deleteLedger(long lId) throws
InterruptedException, BKException

• lId is the ledger identifier;

Asynchronous delete:

BookKeeper Getting Started Guide

Page 7Copyright © The Apache Software Foundation. All rights reserved.

public void asyncDeleteLedger(long lId, DeleteCallback cb,
Object ctx)

It takes a ledger identifier. Additionally, it takes a callback object cb and a control
object ctx. The callback object must implement the DeleteCallback interface in
org.apache.bookkeeper.client.AsyncCallback, and a class implementing it
has to implement a method called deleteComplete that has the following signature:

void deleteComplete(int rc, Object ctx)

where:

• rc is a return code (please refer to org.apache.bookeeper.client.BKDefs for
a list);

• ctx is control object used for accountability purposes.

	Table of contents
	1 Programming with BookKeeper
	1.1 Instantiating BookKeeper.
	1.2 Creating a ledger.
	1.3 Adding entries to a ledger.
	1.4 Closing a ledger.
	1.5 Opening a ledger.
	1.6 Reading from ledger
	1.7 Deleting a ledger

